OpenAPI 1.0
com.aquafold.openapi.math

## Interface AQMath

• `public interface AQMath`
Math

Math contains methods for performing basic numeric operations such as the elementary exponential, logarithm, square root, and trigonometric functions.

Functions

• ### Method Summary

All Methods
Modifier and Type Method and Description
`double` `abs(double value)`
Returns the absolute value of a double value.
`double` `acos(double value)`
Returns the arc cosine of a value; the returned angle is in the range 0.0 through pi.
`double` `asin(double value)`
Returns the arc sine of a value; the returned angle is in the range -pi/2 through pi/2.
`double` `atan(double value)`
Returns the arc tangent of a value; the returned angle is in the range -pi/2 through pi/2.
`double` ```atan2(double x, double y)```
Returns the angle theta from the conversion of rectangular coordinates (x, y) to polar coordinates (r, theta).
`double` `cbrt(double value)`
Returns the cube root of a double value.
`double` `ceil(double value)`
Returns the smallest (closest to negative infinity) double value that is greater than or equal to the argument and is equal to a mathematical integer.
`double` ```constrain(double value, double min, double max)```
Constrains a value to not exceed a maximum and minimum value.
`double` ```copySign(double magnitude, double sign)```
Returns the first floating-point argument with the sign of the second floating-point argument.
`double` `cos(double angle)`
Returns the trigonometric cosine of an angle.
`double` `cosh(double value)`
Returns the hyperbolic cosine of a double value.
`double` `exp(double power)`
Returns Euler's number e raised to the power of a double value.
`double` `expm1(double power)`
Returns (e^x) - 1.
`double` `factorial(int n)`
Returns n!, the product of the numbers 1,...,n.
`double` `floor(double value)`
Returns the largest (closest to positive infinity) double value that is less than or equal to the argument and is equal to a mathematical integer.
`int` ```gcd(int p, int q)```
Returns the greatest common divisor of the absolute value of two numbers, using the "binary gcd" method which avoids division and modulo operations.
`AQCurve` `getCurve()`
`double` `getE()`
Returns the double value that is closer than any other to e, the base of the natural logarithms.
`AQFinancial` `getFinancial()`
`AQFit` `getFit()`
`double` `getPI()`
Returns the value that is closer than any other to pi, the ratio of the circumference of a circle to its diameter.
`AQStat` `getStat()`
`int` `hash(double value)`
Returns an integer hash code representing the given double value.
`double` ```hypot(double x, double y)```
Returns sqrt(x**2 + y**2) without intermediate overflow or underflow.
`double` ```IEEEremainder(double v1, double v2)```
Computes the remainder operation on two arguments as prescribed by the IEEE 754 standard.
`int` ```lcm(int a, int b)```
Returns the least common multiple of the absolute value of two numbers, using the formula lcm(a,b) = (a / gcd(a,b)) * b.
`double` `log(double value)`
Returns the natural logarithm (base e) of a double value.
`double` `log10(double value)`
Returns the base 10 logarithm of a double value.
`double` `log1p(double value)`
Returns the natural logarithm of the sum of the argument and 1.
`double` ```max(double v1, double v2)```
Returns the greater of two double values.
`double` ```min(double v1, double v2)```
Returns the smaller of two double values.
`double` ```nextAfter(double start, double direction)```
Returns the floating-point number adjacent to the first argument in the direction of the second argument.
`double` `nextUp(double d)`
Returns the floating-point value adjacent to d in the direction of positive infinity.
`double` ```norm(double value, double low, double high)```
Normalizes a number from another range into a value between 0 and 1.
`double` ```pow(double a, double b)```
Returns the value of the first argument raised to the power of the second argument.
`double` `random()`
Returns a double value with a positive sign, greater than or equal to 0.0 and less than 1.0.
`double` `rint(double value)`
Returns the double value that is closest in value to the argument and is equal to a mathematical integer.
`long` `round(double value)`
Returns the closest long to the argument.
`double` ```scalb(double d, int scaleFactor)```
Return d x 2**scaleFactor rounded as if performed by a single correctly rounded floating-point multiply to a member of the double value set.
`double` `signum(double d)`
Returns the signum function of the argument; zero if the argument is zero, 1.0 if the argument is greater than zero, -1.0 if the argument is less than zero.
`double` `sin(double angle)`
Returns the trigonometric sine of an angle.
`double` `sinh(double value)`
Returns the hyperbolic sine of a double value.
`double` `sqrt(double value)`
Returns the correctly rounded positive square root of a double value.
`double` `tan(double angle)`
Returns the trigonometric tangent of an angle.
`double` `tanh(double value)`
Returns the hyperbolic tangent of a double value.
`double` `toDegrees(double radians)`
Converts an angle measured in radians to an approximately equivalent angle measured in degrees.
`double` `toRadians(double degrees)`
Converts an angle measured in degrees to an approximately equivalent angle measured in radians.
`double` `ulp(double d)`
Returns the size of an ulp of the argument.
• ### Method Detail

• #### getStat

`AQStat getStat()`
• #### getFinancial

`AQFinancial getFinancial()`
• #### getCurve

`AQCurve getCurve()`
• #### getFit

`AQFit getFit()`
• #### abs

`double abs(double value)`
Returns the absolute value of a double value.
Parameters:
`value` - The value to use in the computation; required.
Returns:
The absolute value of a double value specified.
• #### cbrt

`double cbrt(double value)`
Returns the cube root of a double value.
Parameters:
`value` - The value to use in the computation; required.
Returns:
The cube root of the number specified.
• #### ceil

`double ceil(double value)`
Returns the smallest (closest to negative infinity) double value that is greater than or equal to the argument and is equal to a mathematical integer.
Parameters:
`value` - The value to use in the computation; required.
Returns:
The smallest double value that is greater than or equal to the argument and is equal to a mathematical integer.
• #### constrain

```double constrain(double value,
double min,
double max)```
Constrains a value to not exceed a maximum and minimum value.
Parameters:
`value` - The value to use in the computation; required.
`min` - The minimum value; required.
`max` - The maximum value; required.
Returns:
Returns a value not to exceed the maximum or minimum value.
• #### copySign

```double copySign(double magnitude,
double sign)```
Returns the first floating-point argument with the sign of the second floating-point argument.
Parameters:
`magnitude` - The parameter providing the magnitude of the result.
`sign` - The parameter providing the sign of the result.
Returns:
A value with the magnitude of magnitude and the sign of sign.
• #### exp

`double exp(double power)`
Returns Euler's number e raised to the power of a double value.
Parameters:
`power` - The exponent to raise e to.
Returns:
The value e^a, where e is the base of the natural logarithms.
• #### expm1

`double expm1(double power)`
Returns (e^x) - 1. Note that for values of x near 0, the exact sum of expm1(x) + 1 is much closer to the true result of ex than exp(x).
Parameters:
`power` - The exponent to raise e to in the computation of e^x -1.
Returns:
value
• #### factorial

`double factorial(int n)`
Returns n!, the product of the numbers 1,...,n.
Parameters:
`n` - A integer to use in the computation.
Returns:
The factorial value.
• #### floor

`double floor(double value)`
Returns the largest (closest to positive infinity) double value that is less than or equal to the argument and is equal to a mathematical integer.
Parameters:
`value` - The value to use in the computation; required.
Returns:
The largest (closest to positive infinity) floating-point value that less than or equal to the argument and is equal to a mathematical integer.
• #### gcd

```int gcd(int p,
int q)```
Returns the greatest common divisor of the absolute value of two numbers, using the "binary gcd" method which avoids division and modulo operations.
Parameters:
`p` - A non-zero number; required;
`q` - A non-zero number; required;
Returns:
The greatest common divisor, never zero.
• #### getE

`double getE()`
Returns the double value that is closer than any other to e, the base of the natural logarithms.
Returns:
The double value that is closer then any other to the base of the natural logarithms.
• #### hash

`int hash(double value)`
Returns an integer hash code representing the given double value.
Parameters:
`value` - The value to be hashed; required.
Returns:
The hash code;
• #### hypot

```double hypot(double x,
double y)```
Returns sqrt(x**2 + y**2) without intermediate overflow or underflow.
Parameters:
`x` - A value; required
`y` - A value; required;
Returns:
sqrt(x**2 + y**2) without intermediate overflow or underflow.
• #### IEEEremainder

```double IEEEremainder(double v1,
double v2)```
Computes the remainder operation on two arguments as prescribed by the IEEE 754 standard.
Parameters:
`v1` - The dividend.
`v2` - The divisor.
Returns:
The remainder when f1 is divided by f2.
• #### lcm

```int lcm(int a,
int b)```
Returns the least common multiple of the absolute value of two numbers, using the formula lcm(a,b) = (a / gcd(a,b)) * b.
Parameters:
`a` - The first integer value.
`b` - The second integer value.
Returns:
the least common multiple between a and b.
• #### log

`double log(double value)`
Returns the natural logarithm (base e) of a double value.
Parameters:
`value` - A value; required.
Returns:
The value ln(`value`), the natural logarithm of `value`.
• #### log10

`double log10(double value)`
Returns the base 10 logarithm of a double value.
Parameters:
`value` - A value; required.
Returns:
the base 10 logarithm of `value`.
• #### log1p

`double log1p(double value)`
Returns the natural logarithm of the sum of the argument and 1.
Parameters:
`value` - A value; required.
Returns:
The value ln(x + 1), the natural log of x + 1.
• #### max

```double max(double v1,
double v2)```
Returns the greater of two double values.
Parameters:
`v1` - A value.
`v2` - Another value.
Returns:
The larger of v1 and v2.
• #### min

```double min(double v1,
double v2)```
Returns the smaller of two double values.
Parameters:
`v1` - A value.
`v2` - Another value.
Returns:
The smaller of v1 and v2.
• #### nextAfter

```double nextAfter(double start,
double direction)```
Returns the floating-point number adjacent to the first argument in the direction of the second argument.
Parameters:
`start` - The starting floating-point value.
`direction` - The value indicating which of `start`'s neighbors or `start` should be returned
Returns:
The floating-point number adjacent to start in the direction of `direction`.
• #### nextUp

`double nextUp(double d)`
Returns the floating-point value adjacent to d in the direction of positive infinity.
Parameters:
`d` - The starting floating-point value.
Returns:
value
• #### norm

```double norm(double value,
double low,
double high)```
Normalizes a number from another range into a value between 0 and 1. Numbers outside the range are not clamped to 0 and 1.
Parameters:
`value` - Value
`low` - Low
`high` - High
Returns:
value
• #### pow

```double pow(double a,
double b)```
Returns the value of the first argument raised to the power of the second argument.
Parameters:
`a` - The base.
`b` - The exponent.
Returns:
The value `a`^`b`
• #### random

`double random()`
Returns a double value with a positive sign, greater than or equal to 0.0 and less than 1.0.
Returns:
A pseudorandom double greater than or equal to 0.0 and less than 1.0.
• #### rint

`double rint(double value)`
Returns the double value that is closest in value to the argument and is equal to a mathematical integer.
Parameters:
`value` - A double value.
Returns:
The closest floating-point value to a that is equal to a mathematical integer.
• #### round

`long round(double value)`
Returns the closest long to the argument.
Parameters:
`value` - A floating-point value to be rounded to an integer.
Returns:
The value of the argument rounded to the nearest int value.
• #### scalb

```double scalb(double d,
int scaleFactor)```
Return d x 2**scaleFactor rounded as if performed by a single correctly rounded floating-point multiply to a member of the double value set.
Parameters:
`d` - The number to be scaled by a power of two.
`scaleFactor` - power of 2 used to scale `d`
Returns:
`d` x 2^`scaleFactor`
• #### signum

`double signum(double d)`
Returns the signum function of the argument; zero if the argument is zero, 1.0 if the argument is greater than zero, -1.0 if the argument is less than zero.
Parameters:
`d` - The floating-point value whose signum is to be returned.
Returns:
The signum function of the argument.
• #### sqrt

`double sqrt(double value)`
Returns the correctly rounded positive square root of a double value.
Parameters:
`value` - A value.
Returns:
The positive square root of `a`. If the argument is NaN or less than zero, the result is NaN.
• #### ulp

`double ulp(double d)`
Returns the size of an ulp of the argument. An ulp of a double value is the positive distance between this floating-point value and the double value next larger in magnitude.
Parameters:
`d` - The floating-point value whose ulp is to be returned.
Returns:
The size of an ulp of the argument.
• #### getPI

`double getPI()`
Returns the value that is closer than any other to pi, the ratio of the circumference of a circle to its diameter.
Returns:
the value if PI
• #### acos

`double acos(double value)`
Returns the arc cosine of a value; the returned angle is in the range 0.0 through pi.
Parameters:
`value` - The value whose arc cosine is to be returned.
Returns:
The arc cosine of the argument.
• #### asin

`double asin(double value)`
Returns the arc sine of a value; the returned angle is in the range -pi/2 through pi/2.
Parameters:
`value` - The value whose arc sine is to be returned.
Returns:
The arc sine of the argument.
• #### atan

`double atan(double value)`
Returns the arc tangent of a value; the returned angle is in the range -pi/2 through pi/2.
Parameters:
`value` - The value whose arc tangent is to be returned.
Returns:
The arc tangent of the argument.
• #### atan2

```double atan2(double x,
double y)```
Returns the angle theta from the conversion of rectangular coordinates (x, y) to polar coordinates (r, theta).
Parameters:
`x` - The ordinate coordinate.
`y` - The abscissa coordinate.
Returns:
The theta component of the point (r, theta) in polar coordinates that corresponds to the point (x, y) in Cartesian coordinates.
• #### cos

`double cos(double angle)`
Returns the trigonometric cosine of an angle.
Parameters:
`angle` - An angle, in radians.
Returns:
The cosine of the argument.
• #### cosh

`double cosh(double value)`
Returns the hyperbolic cosine of a double value.
Parameters:
`value` - The number whose hyperbolic cosine is to be returned.
Returns:
The hyperbolic cosine of `value`.
• #### sin

`double sin(double angle)`
Returns the trigonometric sine of an angle.
Parameters:
`angle` - An angle, in radians.
Returns:
The sine of the argument.
• #### sinh

`double sinh(double value)`
Returns the hyperbolic sine of a double value.
Parameters:
`value` - The number whose hyperbolic sine is to be returned.
Returns:
The hyperbolic sine of `value`.
• #### tan

`double tan(double angle)`
Returns the trigonometric tangent of an angle.
Parameters:
`angle` - An angle, in radians.
Returns:
The tangent of the argument.
• #### tanh

`double tanh(double value)`
Returns the hyperbolic tangent of a double value.
Parameters:
`value` - The number whose hyperbolic tangent is to be returned.
Returns:
The hyperbolic tangent of `value`.
• #### toDegrees

`double toDegrees(double radians)`
Converts an angle measured in radians to an approximately equivalent angle measured in degrees.
Parameters:
`radians` - An angle, in radians.
Returns:
The measurement of the angle `radians` in degrees.
`double toRadians(double degrees)`
`degrees` - An angle, in degrees.
The measurement of the angle `degrees` in radians.